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Abstract. We construct an explicit model where it can be established if a two mode pure Gaussian system
is entangled or not by acting only on one of the parts that constitute the system. Measuring the dispersion
in momentum and the time evolution of the dispersion in position of one particle we can tell if entanglement
is present as well as the degree of entanglement of the system.

PACS. 03.67.-a Quantum information – 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR
paradox, Bell’s inequalities, GHZ states, etc.)

1 Introduction

One of the most intriguing features of Quantum Mechan-
ics (QM) is entanglement and in the early times of QM it
was recognized by Erwin Schrödinger [1] and by Einstein,
Podolsky and Rosen [2]. Later, John Bell [3] showed that
the non-local aspect of entanglement is experimentally
testable through his famous inequality.

In recent years the interest in entanglement has in-
creased considerably. First because it is a fundamental tool
in Quantum Information Theory and a consistent char-
acterization of its theoretical properties is needed. Sec-
ond because the present stage of technology permits us
to perform some experimental manipulations with it such
as Quantum Teleportation [4] and Quantum Cryptogra-
phy [5,6].

In the study of the properties of entanglement Peres [7]
and the Horodecki family [8] have derived a necessary
and sufficient condition for the separability of 2 × 2 and
2 × 3 systems. Some years later Simon [9] and Duan
et al. [10] have obtained a necessary and sufficient con-
dition for the separability of two-party Gaussian states.
Given that the state is non-separable we should have a
measure of the degree of this inseparability. There are at
least three distinct measures of entanglement: the entan-
glement of formation [12], the distillable entanglement [13]
and the relative entropy of entanglement [14,15]. In any
calculations done with these three measures of entangle-
ment and the two criteria for separability we must use the
total density matrix of the bipartite system. That is, given
the density matrix that describes the whole bipartite sys-
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tem we can determine if the system is separable or not
and its degree of entanglement.

For pure states it is well-known that the knowledge
of the whole reduced density matrix allows us to decide
whether or not the system is entangled. If the reduced
density matrix is pure (Tr(ρ2

1) = 1) the system is separable
and entangled if it is not pure (Tr(ρ2

1) < 1). This article
aims to show that we need not know the whole reduced
density matrix ρ1 (or equivalently ρ2) of a bipartite pure
system to deduce if it is entangled or not. Here we show
that only the diagonal elements of the reduced density
matrix, even if it is written in a representation where it is
not diagonal, are sufficient to detect entanglement.

To explicitly demonstrate this we construct two
paradigmatic cases: a non-entangled two particle Gaussian
wave function in configuration space and an entangled two
particle Gaussian wave function. We then let both systems
freely evolve in time. We show that when studying an in-
dividual particle of each case we get different results for
the time evolution of the dispersion in position. This fact
allows us to tell if we are working with a non-entangled
or an entangled bipartite Gaussian wave function, and in
the case of an entangled system we can also extract from
this evolution the degree of entanglement.

Some aspects of this approach are similar to the total
wave function reconstruction shown in references [16–18].
Here, however, we do not need to reconstruct the whole
wave function describing the two particles. We only need
two elements of the reduced wave function describing a
single particle, i.e., its dispersion in position and in mo-
mentum. We should also mention that by employing the
powerful techniques given in references [16,17] it might be
possible to generalize the following approach to the case
of mixed Gaussian states.
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2 The non-entangled bipartite system

Consider a normalized one-dimensional separable two par-
ticle Gaussian wave function where we assume, with no
loss of generality, that the two particles have the same
mass m but can in principle be distinguished from each
other:

ψ(x1, x2, t) = ψ1(x1, t) ⊗ ψ2(x2, t), (1)

where

ψ1(x1, t) =
∫
f(k1)ei[k1x1−ω(k1)t]dk1, (2)

ψ2(x2, t) =
∫
f(−k2)ei[k2x2−ω(k2)t]dk2. (3)

Here ω(k) = �k2/2m is the dispersion relation for a free
particle and f(k1), f(−k2) represents the fact that we have
Gaussian particles moving in opposite directions [19]:

f(k) =
√
a

(2π)3/4
e−

a2
4 (k−kc)2 . (4)

In equation (4), a represents the dispersion of the Gaus-
sian wave packet centered in kc and the factor that mul-
tiplies the exponential is the normalization constant.

Integrating in k1 and k2, then multiplying ψ(x1, x2, t)
by its complex conjugate and finally integrating in x2 we
get the probability density of particle 1 at time t [19]:

|ϕ(x1, t)|2 =

√
2
πa2

1√
1 + F (t)

exp
[
− 2
a2

(x1 − vct)2

1 + F (t)

]
,

(5)
where F (t) and vc are given by:

F (t) = F (t, a) =
4�

2t2

m2a4
, vc =

�kc

m
. (6)

With equation (5) we can calculate the dispersion

∆x1 =
√
〈x2

1〉 − 〈x1〉2 of the position of particle 1:

∆x1(t) =
a

2

√
1 + F (t). (7)

We can also obtain the dispersion of the momentum of
particle 1 if we take the Fourier transform of equation (1).
Then multiplying the result by its complex conjugate and
integrating in k2 we obtain:

|ϕ̃(k1, t)|2 =

√
a2

2π
exp

[
−a

2

2
(k1 − kc)2

]
. (8)

Using equation (8) and the fact that p1 = �k1 we easily
get:

∆p1(t) =
�

a
. (9)

As expected for a free particle the dispersion in momen-
tum is constant in time.

3 The entangled bipartite system

Let us now construct a normalized one-dimensional en-
tangled two particle Gaussian wave function where we
assume again, with no loss of generality, that the two
particles have the same mass m but can in principle be
distinguished from each other.

Ψ(x1, x2, t=0) =
∫
dk1dk2f(k1, k2)ψ1(x1, 0) ⊗ ψ2(x2, 0).

(10)
Here ψ1(x1, 0) and ψ2(x2, 0) are given by:

ψ1(x1, 0) = eik1x1e
−x2

1
a2 , (11)

ψ2(x2, 0) = eik2x2e
−x2

2
a2 . (12)

Equation (10) is a superposition of bipartite
Gaussian wave packets centered in k1 and k2 where
f(k1, k2) = g(k1, k2) δ(k1 + k2) are the expansion coef-
ficients and δ(k1 + k2) is a restriction which entangles
the system. This delta function can be viewed as the
requirement for the conservation of momentum in the
center of mass frame, that is, we superpose bipartite
Gaussian wave packets where each party moves in
opposite directions centered at the same momentum.
Equations (11, 12) are proportional to equations (2, 3)
where we integrate for t = 0 and substitute kc by k1 and
k2 respectively. By using the delta function equation (10)
can be rewritten as:

Ψ(x1, x2, 0) =
∫
dk1g(k1)

(
eik1x1e

−x2
1

a2

)(
e−ik1x2e

−x2
2

a2

)
.

(13)
Equation (13) clearly shows that δ(k1 + k2) entangles our
system. Because Ψ(x1, x2, 0) cannot be written as a simple
tensor product of a wave function belonging to particle 1
and another belonging to particle 2 we now deal with a
non-separable wave function. Only if g(k1) is another delta
function we can disentangle the system and recover equa-
tion (1). In equation (13) g(k1) is chosen to be a Gaussian
distribution centered in kc:

g(k1) =

√
2
πa2

f
1
4
2

(b/2)√
π

exp
[−(b/2)2(k1 − kc)2

]
, (14)

where b is a new parameter that measures the degree of
entanglement as explained below and fn = 1 + na2/b2,
n = 1, 2. We can see that when b → ∞ the function
[(b/2)/

√
π] exp[−(b/2)2(k1 − kc)2] → δ(k1 − kc) [20] and

f2 → 1, showing that entanglement has disappeared.
This can be seen doing a straightforward calculation using
equations (14, 13):

lim
b→∞

Ψ(x1, x2, 0) =

[(
2
πa2

)1/4

eikcx1e
−x2

1
a2

]

⊗
[(

2
πa2

)1/4

e−ikcx2e
−x2

2
a2

]
. (15)
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Equation (15) is identical to equation (1) if we calculate
the integrals in equations (2, 3). Furthermore, it can be
shown that if b → 0 and a → ∞ equation (13) is the
EPR state with x0 = 0 [21]. As stated in reference [21],
equation (13) can be viewed as a generalized version of
the EPR wave function. These two facts suggest that b
should be considered as a measure of the degree of entan-
glement, where b → ∞ represents no entanglement and
b→ 0 represents the maximally entangled state.

Doing the integral in equation (13) we get the normal-
ized bipartite Gaussian wave function at t = 0:

Ψ(x1, x2, 0) =

√
2
πa2

f
1
4
2 e

ikc(x1−x2)

× exp
[
− f1
a2

(x2
1 + x2

2) +
2
b2
x1x2

]
. (16)

It is interesting to note that equation (16) repre-
sents a non-separable (entangled) state due to the term
exp[(2/b2)x1x2]. If b → ∞ this term tends to 1 and we
obtain equation (1) as a limiting case of equation (16). In
other words, when b→ ∞ we have equation (1), a separa-
ble, non-entangled state, and for any other value of b we
have equation (16), a non-separable, entangled state.

In order to make rigorous that b furnishes the degree
of entanglement of the state given by equation (16) and
that only when b → ∞ we have a disentangled system
we first calculate its correlation matrix (CM) and apply
the Simon separability criterion [9], which shows that the
bipartite Gaussian system is separable iff b → ∞. After
applying the Simon criterion, we make a local symplec-
tic transformation in the CM to put it in its standard
form [9,10] and then calculate its entanglement of for-
mation (EoF) [22], which is a monotonically decreasing
function of the parameter b, proving that the higher b the
less entangled is the state. As we deal with a pure state,
we note that we can calculate the von Neumann entropy
of the reduced density matrix to obtain the entanglement
of this system. However, we prefer using the EoF as given
in reference [22] since, in the particular case of symmetric
bipartite Gaussian states, it is more straightforward than
the usual procedure for pure states.

The CM completely specify a two mode Gaussian state
and it is a 4 × 4 matrix, which has the following ele-
ments [9,10]:

γij = Tr [(RiRj +RjRi)ρ] − 2Tr[Riρ]Tr[Rjρ], (17)

where R = (X1, P1, X2, P2)T and Rj are the position and
momentum operators of the two particles. Doing the cal-
culations we get the following CM:

γ =
(
A C
CT A

)
, (18)

where

A =

(
a2f1
2f2

0

0 2�
2f1

a2

)
, C =

(
a4

2b2f2
0

0 − 2�
2

b2

)
. (19)

The Simon separability criterion says that the above CM
represents a non-entangled system iff [11]:

I = detAdetB +
(
�

2 − |detC|)2 − Tr{AJCJBJCTJ}
− �

2(detA+ detB) ≥ 0, (20)

where J =
(

0 1
−1 0

)
. But a simple calculation shows that

the rhs of equation (20) is:

I = −4�
4 a

4

b4
1
f2
. (21)

Hence, I < 0 except when b → ∞, proving that for any
other value of b we have an entangled state.

We now make the following local symplectic transfor-
mation S = diag (s, s−1, s, s−1), where s =

(
4�

2f2/a
4
)1/4.

This brings γ to its standard form γ0 = SγST [9,10]:

γ0 =

⎛
⎜⎝
n 0 kx 0
0 n 0 −kp

kx 0 n 0
0 −kp 0 n

⎞
⎟⎠ , (22)

where n = �f1/
√
f2 and kx = kp = �a2/(b2

√
f2). This is

a symmetric Gaussian system and Giedke et al. [22] have
shown that the EoF for this state is:

EoF(Ψ) = f

[√
(n− kx)(n− kp)

]
, (23)

where,

f(δ) = c+(δ) log2[c+(δ)] − c−(δ) log2[c−(δ)]. (24)

Here c±(δ) = (δ−1/2 ± δ1/2)2/4. Analyzing the behavior
of the EoF given by equation (23) we clearly see that it is
a decreasing function of the parameter b (Figs. 1 and 2).

Working in the Heisenberg picture we easily obtain for
a free evolution,

∆x1(t) =
a

2

√
f1
f2

[1 + f2F (t)], (25)

∆p1(t) =
�

a

√
f1. (26)

Again, due to the free evolution of particle 1 the dispersion
in momentum does not vary in time.

We should mention that the formal solution of the
Heisenberg equations of motion for the observables x1(t),
x2

1(t), p1(t), and p2
1(t) are identical for the entangled and

non-entangled case. Only when we take the mean values
〈x1(t)〉, 〈x2

1(t)〉, 〈p1(t)〉, and 〈p2
1(t)〉 we obtain different

quantities. This is due to the fact that we have differ-
ent initial wave functions. In other words, entanglement
manifests itself furnishing different initial conditions for
the Heisenberg equations of motion, which imply different
evolutions for the dispersions.
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Fig. 1. Entanglement of formation, equation (23), for the sym-
metric Gaussian state given by equation (16), as function of the
parameters a and b, where we have put � = 1. We clearly see
the EoF increasing as b → 0 and decreasing as a → 0.

1 2 3 4 5
1
����
b

1

2

3

4

5

EoF

Fig. 2. Entanglement of formation, equation (23), as a func-
tion of 1/b for ten values of the parameter a. From bottom to
top the parameter a varies from 1 to 10 in increments of one
unit. We have set � = 1. We clearly see that the EoF increases
as b decreases and that for a given b, the higher a, the greater
the EoF.

4 The measuring protocol

As we have all tools now, that is, all the dispersions in
position and in momentum for the entangled and non-
entangled case, we develop a measurement procedure to
be used in an ensemble of two particle Gaussian systems
which allows us to locally decide whether or not the par-
ticles are entangled. From now on we assume � = m = 1
for simplicity.

Let Bob be our physicist who receives one of the par-
ticles of the bipartite Gaussian system produced by Alice.
Bob knows, because Alice has told him, that all the par-
ticles he receives are either entangled or non-entangled
Gaussian wave packets, according to the two construc-
tions explained above. There are no other possibilities.
Alice produces many pairs at once. And continues to pro-
duce many pairs at once for different times. Of course Bob
does not know the values of the parameters a and b used
by Alice. But Bob is curious enough and wants to know
whether his particles are entangled or not. Bob cannot use
any further classical communication, he can act only lo-
cally on his particles and he is able only to measure the
dispersions in position and in momentum of his particles,
that is, the diagonal elements of the system reduced den-
sity matrix. He proceeds as follows:

First he measures, using a sub-ensemble, the dispersion
in momentum of his wave packets. He obtains∆p1 = u. He
does not know yet whether equation (9) or equation (26)

1 2 3 4 5
t

1

2

3

4

5

�x

Fig. 3. The dashed curve is the time evolution of the dispersion
in position for an entangled Gaussian wave packet while the
solid curve represents the non-entangled case. We have chosen
b = 1 and u = 1.01.

represents what he measures. However he knows that it
must be one of these two possibilities, which imply only
two possible time evolution for the dispersion in the posi-
tion of his particles.

If his particles are not entangled and Bob uses in equa-
tion (7) the fact that ∆p1(t) = u = 1/a he gets:

∆x1(t) =
1
2u

√
1 + 4u4t2. (27)

But if Bob’s particles are entangled and now he uses the
fact that ∆p1(t) = u =

√
f1/a, equation (25) becomes:

∆x1(t) =
1
2u

√
u4b4

u4b4 − 1
+ 4u4t2. (28)

Looking at equations (27, 28) we see that if Bob knows at
what time Alice has begun to produce the pairs he is able
to discover, with only one measurement of ∆x1, whether
his particles are entangled with Alice’s or not. The reason
for this is simple: let us suppose, with no loss of generality,
that Alice begins to produce the pairs of particles at t = 0.
Measuring the dispersion in position for a given time t Bob
obtains ∆x1(t). Remembering that Bob also knows the
value of u, he can calculate, using equation (27), the value
of ∆x1(t). If this calculated value of the dispersion agrees
with the measured one, Bob has the non-entangled case.
If this value of ∆x1 is different, Bob has entanglement.
In this last case, using equation (28) Bob can obtain the
parameter b. For any t Bob can use this procedure. Bob
sees two distinct curves for the time evolution of ∆x1(t),
whether his particles are entangled or not; see Figure 3.

Analyzing equation (28) we see that for it to be valid
for all t ≥ 0 we must have for the entangled case:

ub > 1. (29)

It is worth noting that asymptotically equations (27, 28)
are the same. Therefore, in order for Bob to correctly dis-
tinguish between the two cases he should make his mea-
surements for times smaller than a critical time tc, which
is defined to be the time where the time independent term
inside the square root of equation (28) is of the order of
the t2 term:

tc ≈ b2

2
√
u4b4 − 1

. (30)
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We can increase tc making ub→ 1. This might seem as a
limitation of our procedure but as Alice sends a classical
message to Bob defining the origin of time, Bob can start
making measurements as early as possible.

Now let us make things harder to Bob. We assume from
now on that Bob does not know when and where Alice
has begun to produce the pairs. This fact means that Bob
cannot use the previous procedure to answer whether or
not his particles are entangled with Alice’s. The previous
protocol fails because Bob does not know what time t he
should use to calculate ∆x1(t), which would have allowed
him to compare this calculated value with the measured
∆x1(t).

We first prove why a single measurement at time t is
not enough for Bob to tell whether his particles are en-
tangled or not. We are now assuming that he does not
know when Alice has begun to produce the particles. The
proof is achieved showing that the diagonal elements of
the reduced density matrix (in position and in momentum
representation) of the non-entangled system can be made
identical to the diagonal elements of the reduced density
matrix of the entangled system for t = 0. (The same rea-
soning applies to any t, but for t = 0 the calculations are
much simpler and we do not lose in generality.)

For t = 0 the diagonal elements of the reduced density
matrix of the entangled system in momentum representa-
tion is

	1(k1) =
∫

〈k1, k2|Ψ 〉〈Ψ |k1, k2〉 dk2

=

√
a2

2πf1
exp

[
− a2

2f1
(k1 − kc)2

]
. (31)

For any t, the diagonal elements of the reduced density
matrix of the non-entangled system in the momentum rep-
resentation, according to equation (8), reads:

ρ1(k1, t) =
∫

〈k1, k2|ψ 〉〈ψ |k1, k2〉 dk2

=

√
a′2

2π
exp

[
−a

′2

2
(k1 − kc)2

]
. (32)

If we want identical diagonal elements of the reduced den-
sity matrices we must impose that:

a′ =
a√
f1

=
1
u
. (33)

The diagonal elements of the reduced density matrix for
t = 0 of the entangled system written in the position rep-
resentation is:

	1(x1) =
∫

〈x1, x2|Ψ 〉〈Ψ |x1, x2〉 dx2

=

√
2f2
πa2f1

exp
[
− 2f2
a2f1

x2
1

]
. (34)

As stated in equation (5), the diagonal elements of the
reduced density matrix for any t of the non-entangled sys-

1 2 3 4
t
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�x

Fig. 4. The dashed curve is the time evolution of the dispersion
in position for an entangled Gaussian wave packet produced 1
unity of time after the production of the non-entangled case,
which is represented by the solid curve. The curves intercept
each other for t ≈ 2.46. If Bob measures ∆x1 for this time,
he cannot distinguish between the two ways in which Alice
can produce the pairs of particles. For any other point of the
dashed curve we can find a solid one that crosses it. There-
fore, Bob cannot distinguish how his particles were produced
if he measures ∆x1 only once. Here we have chosen b = 1 and
u = 1.01.

tem in position representation is:

ρ1(x1) =
∫

〈x1, x2|ψ 〉〈ψ |x1, x2〉 dx2

=

√
2
πa′2

1√
1 + F (t, a′)

× exp
[
− 2
a′2

(x1 − vct)2

1 + F (t, a′)

]
.

(35)

If we want equations (34, 35) giving the same statistical
predictions we must have:

2f2
a2f1

=
2
a′2

1
1 + F (t, a′)

. (36)

Equation (36) is a restriction which forces the two density
matrix to give the same dispersion in position. (We do not
need to bother with the first order moment of these Gaus-
sian functions because a translation of the x1-axis sets it
to zero.) If we use equations (33, 36) and the fact that
fn = 1 + n a2/b2 we arrive at the following condition:

t =
1

2u2

1√
u4b4 − 1

. (37)

Equation (37) says that for only, and only one time t, the
diagonal elements of the reduced density matrices, one ob-
tained from the entangled system and the other one ob-
tained from the non-entangled system, furnish the same
statistical predictions. This implies that single measure-
ments of the dispersion in momentum and in position of
particle 1 do not tell us unequivocally whether we are deal-
ing with a non-entangled or entangled Gaussian bipartite
system (unless, of course, we know when Alice has begun
to produce the pairs); see Figure 4.
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To circumvent the limitation of the previous protocol
Bob may apply the following one, which explicitly uses
the difference in time evolution of the two systems.

Bob again initially measures the dispersion in momen-
tum of his particles (∆p1 = u). As he does not know when
and where Alice begins to produce the pairs of Gaussian
particles, the time evolution of the dispersions in position
for the non-entangled and entangled systems are:

∆x1(t) =
1
2u

√
1 + 4u4(t+ t0)2. (38)

∆x1(t) =
1
2u

√
u4b4

u4b4 − 1
+ 4u4(t+ t0)2. (39)

Here t0 is the time elapsed from the production of the pair
by Alice until Bob makes his first set of measurements.
Bob now makes several measurements of the dispersion in
position for different times t. With these measurements he
obtains the following set of points:

{(∆x1(0), 0), (∆x1(t1), t1), . . . , (∆x1(tn), tn)}.
He makes as many measurements as possible. With the n
pairs of points above he fits the following curve, where α
and β are the free parameters and u is already known:

∆x1(t) =
1
2u

√
α+ 4u4(t+ β)2. (40)

Looking at equations (40, 38, 39) we see that if the pa-
rameter α = 1 Bob is dealing with non-entangled Gaussian
functions, but if α 	= 1 Bob deals with entangled particles.
And using α Bob can calculate the value of the degree of
entanglement b. Just for completeness we mention that
β furnishes the time t0. For this protocol to be optimal,
Bob should begin his measurements as soon as possible
since, asymptotically in time, equations (38, 39) are seen
to become identical.

5 Conclusion

We have shown an explicit model using two particle Gaus-
sian systems where we can decide if we are dealing with
non-entangled or entangled pairs acting only on one of the
particles and measuring only the diagonal elements of its
reduced density matrix. Measuring the dispersion in mo-
mentum and then the time evolution of the dispersion in
position of one member of the pair it is possible to dis-
cern between the entangled and non-entangled cases. It is
also possible with this procedure to determine the degree
of the entanglement of the system. The above model sug-
gests that just one part of the whole system can furnish
more information about the degree of the entanglement of
the system than we had imagined.

Finally it is important to note that the presented
measurement protocol uses the time evolution of the diag-
onal elements of the reduced density matrix to determine
whether or not we have entanglement. This fact shows that

we may have a new tool to analyze the properties of en-
tangled systems, i.e., the dynamical evolution of entangled
states. So far all the methods used to study the properties
of entangled systems have not employed the dynamics of
the system. We are hopeful that studying the dynamics
of entangled systems will help us to deepen our under-
standing of entanglement and possibly it will unravel new
features of entanglement not yet explored.

This work was supported by Fundação de Amparo à Pesquisa
do Estado de São Paulo (FAPESP) and Conselho Nacional de
Desenvolvimento Cient́ıfico e Tecnológico (CNPq). We thank
Dr. Léa F. dos Santos for her careful reading of the manuscript
and useful discussions.
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W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)
5. C.H. Bennett, G. Brassard, N.D. Mermin, Phys. Rev. Lett.

68, 557 (1992)
6. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)
7. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)
8. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A

223, 1 (1996)
9. R. Simon, Phys. Rev. Lett. 84, 2726 (2000)

10. L-M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev.
Lett. 84, 2722 (2000)

11. To recover the Simon separability criterion as it was pre-
sented in Simon’s paper [9] we should substitute �

2 in
equation (20) by �

2/4. This difference is due to the fact
that Simon’s CM is defined as the half of our CM γ. We
use the same notation as [10]

12. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K.
Wootters, Phys. Rev. A 54, 3824 (1996)

13. C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher,
J.A. Smolin, W.K. Wootters, Phys. Rev. Lett. 76, 722
(1996)

14. V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys.
Rev. Lett. 78, 2275 (1997)

15. V. Vedral, M.B. Plenio, K. Jacobs, P.L. Knight, Phys. Rev.
A 56, 4452 (1997)

16. U. Leonhardt, M.G. Raymer, Phys. Rev. Lett. 76, 1985
(1996)

17. T. Richter, A. Wünsche, Phys. Rev. A 53, R1974 (1996)
18. Ch. Kurtsiefer, T. Pfau, J. Mlynek, Nature 386, 150 (1997)
19. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum
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